Arrhythmogenic Threshold of the Myocardium under Conditions of Magnesium Deficiency

A. A. Spasov, I. N. Iezhitsa, M. V. Kharitonova, and N. A. Gurova

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 146, No. 7, pp. 69-71, July, 2008 Original article submitted June 6, 2007.

We studied the arrhythmogenic threshold of the myocardium after injection of $CaCl_2$ to magnesium-deficient rats receiving Mg^{2+} L-aspartate, $MgCl_2$, their combination with vitamin B_6 , and reference preparations Magne $B_6^{\, \oplus}$ and $MgSO_4$ until complete compensation of magnesium level in the plasma and erythrocytes. Magnesium-deficient diet and deionized water were used for inducing alimentary Mg^{2+} deficiency and modeling pathological changes in rats. After reducing Mg^{2+} level to 0.7 mmol/liter in the plasma and to 1.5 mmol/liter in erythrocytes, Mg L-aspartate, $MgCl_2$, their combination with vitamin B_6 , as well as Mg^{2+} deficiency led to a decrease in the dose of $CaCl_2$ provoking heart rhythm disturbances in 50% animals and shortening of animal life span. Administration of the test magnesium salts increased the arrhythmogenic threshold; Mg^{2+} salts were comparable by their efficiency with Magne $B_6^{\, \oplus}$ and were far superior to $MgSO_4$.

Key Words: magnesium deficiency; arrhythmia; calcium chloride; magnesium; pyridoxine

Antiarrhythmic effects of Mg²⁺ are used for the treatment of digitalis intoxication, vasospastic angina pectoris, and arrhythmias. Correction of Mg²⁺ deficiency (MD) eliminates rhythm disturbances in parenteral and/or peroral administration of Mg²⁺ salts.

The effect of various Mg²⁺ compounds such as Mg(OH)₂, MgO, MgSO₄ was evaluated in numerous experimental and clinical studies [4,7,8]. Holter monitoring showed that the incidence of ventricular and atrial arrhythmias in individuals with low blood Mg²⁺ content caused by insufficient alimentary Mg²⁺ intake is higher than in the group with normal Mg²⁺ content [6].

Mg²⁺ salts are characterized by different bioavailability [3]; combination of these salts with pyridoxine increases this parameter. Evaluation of the rate of compensation of alimentary MD with

Institute of Pharmacology; Department of Pharmacology, Volgograd State Medical University, Russia. *Address for correspondence:* farm@vlpost.ru. A. A. Spasov.

inorganic and organic Mg²⁺ salts [5] showed that Mg L-aspartate (MLA) and MgCl₂ are most effective organic and inorganic compounds, respectively. Intravenous administration under conditions of rhythm disturbances caused by CaCl₂, L-stereoisomer of Mg-aspartate was more effective than its DL- and D-stereoisomers [2].

The aim of the present study was to compare the effect of MLA, $MgCl_2$ and their combinations with vitamin B_6 on the course of $CaCl_2$ -induced arrhythmias under conditions of alimentary MD.

MATERIALS AND METHODS

Experiments were carried out on 140 male Wistar rats weighing 170-250 g. Control animals (*n*=25) received magnesium-balanced diet. In other rats, alimentary MD was induced by magnesium-deficient diet (ICN Biomedicals Inc.). The rate and severity of hypomagnesiumemia was controlled by measuring the content of Mg²⁺ in the plasma and erythrocytes by the color reaction with titanium

yellow (spectrophotometrically). After attaining medium-severe hypomagnesiumemia, the test magnesium salts MLA, MgCl₂, and their combination with vitamin B₆, and reference preparations Magne B₆[®] (Mg lactate with vitamin B₆) and MgSO₄ were administered *per os* in a dose of 50 mg Mg²⁺ per 1 kg body weight for 21 days until complete compensation of Mg²⁺ level in the plasma and erythrocytes. Vitamin B₆ was added to MgCl₂ and MLA in a dose of 5 mg/kg.

The values of compensation of Mg (X) deficiency was calculated by the formula:

$$X = \frac{C_{\text{salt}} - C_{\text{diet}}}{C_{\text{intact}} - C_{\text{diet}}} \times 100\%,$$

where C_{salt} is Mg^{2+} concentration in animals after administration of the salt, C_{diet} is Mg^{2+} concentration in animals receiving MD diet, and C_{intact} is Mg^{2+} concentration in intact animals.

Before the experiment, the animals were intraperitoneally narcotized with sodium ethaminal (40 mg/kg). The arrhythmogenic capacity of $CaCl_2$ was studied after its intraperitoneal injection of 10% solution in increasing doses. ECG in standard lead II was recorded using a medical oscilloscope OS2-01 and N-338-8 writter. Rhythm disturbances were controlled by changes in ECG waves. The dose of $CaCl_2$ (mg/kg) inducing arrhythmias in 50% animals (ATD₅₀) was calculated by probit analysis.

Prophylactic efficiency of Mg²⁺ salts after peroral treatment was evaluated by their capacity to prevent the development of arrhythmia, lengthen the arrhythmia latency and duration (from the appearance of arrhythmia to animal death), and lengthen animal survival time.

The data were processed statistically using oneway dispersion analysis and Dunkan test; regression analysis was also used.

RESULTS

Feeding MD for 7 weeks reduced Mg^{2+} content in the plasma (from 1.070 ± 0.031 to 0.700 ± 0.041 mmol/liter) and erythrocytes (from 1.900 ± 0.031 to 1.04 ± 0.024 mmol/liter). These changes were accompanied by body weight loss by 25% (p<0.05) and death of 32% animals in the MD group. Evaluation of proarrhythmogenic threshold for different CaCl₂ doses showed that ATD₅₀ in MD rats was below the control value by 17.5% (Table 1).

Peroral treatment with magnesium salts restored the level of Mg^{2+} in the plasma and erythrocytes. The capacity to compensate MD in erythrocytes for

the test salts decreases in the following order: MLA in combination with vitamin B_6 (151%) \geq MgCl₂ in combination with vitamin B_6 (148%)>MLA (129%) \geq Magne B_6 (113%) \geq MgCl₂ (105%)>MgSO₄ (97%). The concentration of Mg²⁺ in the plasma and erythrocytes did not exceed the upper boundaries of normal.

Compensation of MD was accompanied by an increase in the dose of CaCl₂ provoking heart rhythm disturbances (Table 1). MLA in combination with vitamin B₆, MLA, and MgCl₂ in combination with vitamin B₆ were most effective in reducing the proarrhythmogenic threshold of CaCl₂; MgSO₄ demonstrated minimum efficiency.

For evaluation of the nature and intensity of arrhythmia, we measured arrhythmia latency (from the moment of CaCl₂ administration) and duration. CaCl₂ in a dose of 170 mg/kg induced rhythm disturbances in most animals. In MD animals, the latency and duration of arrhythmia were shorter than in intact animals by 27 and 46%, respectively.

Peroral treatment with Mg^{2+} salts normalized these parameters. MLA in combination with vitamin B_6 was most effective in this respect and lengthened the time to arrhythmia by 95% (p=0.083).

MLA and MgCl₂ in combination with vitamin B_6 and MLA significantly prolonged the time of survival compared to MD animals. In groups receiving these salts this parameter surpassed the corresponding value in MD group by 85.38% (p=0.016), 70.54% (p=0.036), and 73.15% (p=0.032), respectively. MLA in combination with vitamin B_6 was more effective then MgSO₄ (p=0.041).

Thus, the decrease in arrhythmogenic threshold observed in our experiments agrees with published data. MD leads to a decrease in K+ content in cardiomyocytes, increase the risk of ventricular arrhythmias, in particular extrasistoles and torsade de pointes tachycardia. Mg²⁺ can block slow inward Ca²⁺ current, which decreases the frequency of impulse generation by the sinus node, lengthen the time of atrioventricular conduction, and increases the time of its refractoriness. Apart from antagonism with Ca²⁺ ions, Mg²⁺ produces a membranestabilizing effect, prevents K⁺ loss in cells, and interferes with sympathetic influences [1]. MLA alone and in combination with pyridoxine exhibited maximum activity. We previously demonstrated that MLA in intravenous administration more effectively prevents CaCl₂-induced arrhythmias than its D- and DL-stereoisomers [2] This can be explained by the fact that aspartate ion being a carrier of Mg2+ ions facilitates their transport into the intracellular space, while aspartate itself after entering the cell is integrated into cell metabolism. According to current A. A. Spasov, I. N. Iezhitsa, et al.

TABLE 1. Arrhythmogenic	Throchold in Date	Doggiving	Pororal Ma2+	Proparations
IADLE I. Annyunnogenic	Threshold in Hals	Receiving	Peroral Mg-	Preparations

Test preparation	ATD ₁₆	ATD ₅₀	ATD ₈₄
Control	134.13 (129.88-138.52)	146.04 (141.41-150.83)	159.01 (153.97-164.22)
MD	108.51 (99.89-117.88)	120.56 (110.99-130.96)	133.95 (123.31-145.51)
MLA+vitamin B ₆	137.55 (125.85-150.33)	162.17 (148.38-177.24)	181.39 (165.97-198.25)
MgCl ₂ +vitamin B ₆	145.95 (133.31-159.78)	160.41 (146.52-175.61)	176.31 (161.04-193.04)
MLA	145.97 (130.71-163.02)	161.52 (144.63-180.38)	178.73 (160.04-199.60)
MgCl ₂	144.85 (130.10-161.28)	155.85 (139.98-173.53)	167.69 (150.60-186.71)
Magne B ₆ ®	145.81 (130.16-163.34)	156.22 (139.46-175.01)	167.38 (149.42-187.51)
MgSO ₄	142.54 (129.04-157.45)	152.82 (138.35-168.81)	163.86 (148.34-181.00)

views on stereospecificity, L-isomers of amino acids are more actively assimilated and integrated into biochemical processes in human body.

Thus, we showed that Mg²⁺ level in the plasma and erythrocytes decreases on week 7 of MD diet. MD was associated with increased sensitivity of experimental animals to the arrhythmogenic effect of CaCl₂, which manifested in a decrease in the dose of CaCl₂ inducing arrhythmia in 50% animals and shortening of the latency and duration of arrhythmias. Prophylactic peroral treatment with Mg²⁺ salts compensated MD. The capacity to compensate MD in erythrocytes for the test salts decreases in the following order: MLA in combination with vitamin B₆≥MgCl₂ in combination with vitamin B₆> MLA≥Magne B₆≥MgCl₂>MgSO₄. Treatment with Mg²⁺ salts increased the arrhythmogenic dose of CaCl₂ and lengthened the latency and duration of arrhythmia. MgCl₂ and MLA alone and in combinations with pyridoxine were most effective by the

majority of parameters, MLA was more effective than MgSO₄ and comparable to Magne B₆.

REFERENCES

- A. A. Spasov, Magnesium in Medical Practice [in Russian], Volgograd (2000).
- A. A. Spasov, I. N. Iezhitsa, N. V. Zhuravleva, et al., Kardiologiya, 46, No. 7, 62-65 (2006).
- 3. M. Firoz and M. Graber, *Magnes. Res.* **14**, No. 4, 257-262 (2001).
- S. Ichikawa, Jpn. J. Thorac. Cardiovasc. Surg., 46, No. 3, 287-298 (1998).
- I. N. Iezhitsa, A. A. Spasov, M. S. Kravchenko, et al., J. Jpn. Soc. Magnes. Res., 25, No. 2, 99 (2006).
- L. M. Klevay and D. B. Milne, Am. J. Clin. Nutr., 75, No. 3, 550-554 (2002).
- 7. C. Meenagh, C. Mulholland, and M. F. Ryan, *J. Psychopharmacol.*, **8**, No. 3, 438-439 (2004).
- 8. A. Tsuji, K. Araki, K. Maeyama, and Ê. Hashimoto, *J. Cardiovasc. Pharmacol. Ther.*, **10**, No. 3, 205-208 (2005).